"2020" Annual Drinking Water Quality Report "Town of North Wilkesboro"

Water System Number: "01-97-010"

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is a snapshot of last year's water quality. Included are details about your source(s) of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and to providing you with this information because informed customers are our best allies. If you have any questions about this report or concerning your water, please contact [Town of North Wilkesboro] at [(336) 838-2371].

What EPA Wants You to Know

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Town of North Wilkesboro] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include <u>microbial contaminants</u>, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; <u>inorganic contaminants</u>, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; <u>pesticides and herbicides</u>, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; <u>organic chemical contaminants</u>, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and <u>radioactive contaminants</u>, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

When You Turn on Your Tap, Consider the Source

The water that is used by this system is drawn from the Reddies River.

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environment and Natural Resources (DENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of 04/2015

the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information and a relative susceptibility rating of Higher, Moderate or Lower.

The relative susceptibility rating of each source for [Town of North Wilkesboro] was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Susceptibility of Sources to Potential Contaminant Sources (PCSs)

Source Name	Susceptibility Rating	SWAP Report Date
Reddies River	Moderate	09/09/2020

The complete SWAP Assessment report for [North Wilkesboro, Town of] may be viewed on the Web at:

<u>www.ncwater.org/pws/swap</u>. Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this web site may differ from the results that were available at the time this CCR was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program – Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@ncdenr.gov. Please indicate your system name, number, and provide your name, mailing address and phone number. If you have any questions about the SWAP report please contact the Source Water Assessment staff by phone at 919-707-9098.

It is important to understand that a susceptibility rating of "higher" <u>does not</u> imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

Help Protect Your Source Water

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source(s) in several ways: (examples: dispose of chemicals properly; take used motor oil to a recycling center, volunteer in your community to participate in group efforts to protect your source, etc.).

Violations that Your Water System Received for the Report Year

During (2020), or during any compliance period that ended in (2020), we received a [Monitoring x0] violation.

Treatment Technique Violations

TT Violation	Explanation	Length of Violation	Steps Taken to Correct the Violation	Health Effects Language

NOTICE TO THE PUBLIC

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Violation Awareness Date: ____

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the compliance period specified in the table below, we ['did not monitor or test' or 'did not complete all monitoring or testing'] for the contaminants listed and therefore cannot be sure of the quality of your drinking water during that time.

CONTAMINANT GROUP**	FACILITY ID NO./ SAMPLE POINT ID	COMPLIANCE PERIOD BEGIN DATE	NUMBER OF SAMPLES/ SAMPLING FREQUENCY	WHEN SAMPLES WERE TAKEN (Returned to Compliance)

(AS) Asbestos - includes testing for Chrysotile, Amphibole and Total Asbestos.

(BA) Total Coliform Bacteria – includes testing for Total Coliform bacteria and Fecal/*E.coli* bacteria. Testing for Fecal/*E.coli* bacteria is required if total coliform is present in the sample.

(BB) Bromate/Bromide – includes testing for Bromate and/or Bromide.

(CD) Chlorine Dioxide/Chlorite - includes testing for Chlorine Dioxide and/or Chlorite.

(DI) Disinfectant Residual must be tested with the collection of each compliance bacteriological sample, at the same time and site.

<u>Fecal Indicators</u> – includes *E.coli*, enterococci or coliphage. (HAA5)- Haloacetic Acids - include Monochloroacetic Acid, Dichloroacetic Acid, Trichloroacetic Acid, Monobromoacetic Acid, Dibromoacetic Acid. (IOC) Inorganic chemicals - include Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cyanide, Fluoride, Iron, Manganese, Mercury, Nickel, pH, Selenium, Sodium, Sulfate, and Thallium.

(LC) Lead and Copper are tested by collecting the required number of samples and testing each of the samples for both lead and copper. (NT) Nitrate/ (NI) Nitrite – includes testing for nitrate and/or nitrite.

(RA) Radionuclides - includes Gross Alpha, Radon, Uranium, Combined Radium, Radium 226, Radium 228, Potassium 40 (Total), Gross Beta, Tritium, Strontium 89, Strontium 90, Iodine 131, and Cesium 134.

(SOC) – Synthetic Organic Chemicals/Pesticides – include 2,4-D, 2,4,5-TP (Silvex), Alachlor, Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Di(2-ethylhexyl)phthalate, Dibromochloropropane (DBCP), Dinoseb, Endrin, Ethylene dibromide (EDB), Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl(vydate), PCBs, Pentachlorophenol, Picloram, Simazine, Toxaphene.

(TOC) - Total Organic Carbon - includes testing for Alkalinity, Dissolved Organic Carbon (DOC), Total Organic Carbon (TOC) and Ultraviolet Absorption 254 (UV254). Source water samples must be tested for both TOC and Alkalinity. Treated water samples must be tested for TOC. Source water samples and treated water samples must be collected on the same day.

(TTHM) - Total Trihalomethanes - include Chloroform, Bromoform, Bromodichloromethane, and Dibromochloromethane.

(VOC) - Volatile Organic Chemicals - include 1,2,4-Trichlorobenzene, Cis-1,2-Dichloroethylene, Xylenes (Total), Dichloromethane, o-Dichlorobenzene, p-Dichlorobenzene, Vinyl Chloride, 1,1,-Dichloroethylene, Trans-1,2,-Dichloroethylene, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,2-Dichloropropane, Trichloroethylene, 1,1,2-Trichloroethane, Tetrachloroethylene, Chlorobenzene, Benzene, Toluene, Ethylbenzene, and Styrene.

(WQP) Water Quality Parameters (for Lead and Copper Rule) - includes Calcium, Orthophosphate (as PO₄), Silica, Conductivity, pH, Alkalinity and Water Temperature.

What should I do? There is nothing you need to do at this time.

What is being done? [Describe corrective action.]

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

For more information about this violation, please contact the responsible person listed in the first paragraph of this report.

Water Quality Data Tables of Detected Contaminants

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we <u>detected</u> in the last round of sampling for each particular contaminant group. The presence of contaminants does <u>not</u> necessarily indicate that water poses a health risk. **Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, (2020).** The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Important Drinking Water Definitions:

Not-Applicable (N/A) – Information not applicable/not required for that particular water system or for that particular rule.

Non-Detects (ND) - Laboratory analysis indicates that the contaminant is not present at the level of detection set for the particular methodology used.

Parts per million (ppm) or Milligrams per liter (mg/L) - One part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) - One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/L) - One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/L) - One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000.

Picocuries per liter (pCi/L) - Picocuries per liter is a measure of the radioactivity in water.

Million Fibers per Liter (MFL) - Million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Nephelometric Turbidity Unit (NTU) - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Maximum Residual Disinfection Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfection Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Locational Running Annual Average (LRAA) – The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters under the Stage 2 Disinfectants and Disinfection Byproducts Rule.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Tables of Detected Contaminants

Microbiological Contaminants in the Distribution System - For systems that collect less than 40 samples per month

Contaminant (units)	MCL Violation Y/N	Your Water	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria (presence or absence)	N	0	0	l positive sample / month* Note: If either an original routine sample and/or its repeat	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (presence or absence)	N	0	0	samples(s) are fecal coliform or <i>E. coli</i> positive, a Tier 1 violation exists.	Human and animal fecal waste

* If a system collecting fewer than 40 samples per month has two or more positive samples in one month, the system has a MCL violation.

Turbidity*

Contaminant (units)	Treatment Technique (TT) Violation Y/N	Your Water	MCLG	Treatment Technique (TT) Violation if:	Likely Source of Contamination
Turbidity (NTU) - Highest single turbidity measurement	Ν	.299 NTU	.300	Turbidity >1 NTU	
Turbidity (NTU) - Lowest monthly percentage (%) of samples meeting turbidity limits	Ν	100%	N/A	Less than 95% of monthly turbidity measurements are ≤ 0.3 NTU	Soil runoff

* Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The turbidity rule requires that 95% or more of the monthly samples must be less than or equal to 0.3 NTU.

Inorganic Contaminants

organic Containnant	Sample	MCL	Your	Range				
Contaminant (units)	Date	Violation Y/N	Water	Low H	ligh	MCLG	MCL	Likely Source of Contamination
Antimony (ppb)	6/10/20	Ν	ND			6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	6/10/20	N	ND			0	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	6/10/20	Ν	ND			2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium (ppb)	6/10/20	N	ND			4	4	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	6/10/20	N	ND			5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	6/10/20	N	ND			100	100	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide (ppb)	6/10/20	Ν	ND			200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride (ppm)	6/10/20	Ν	.73 MG/L			4	4	Erosion of natural deposits; water additiv which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (inorganic) (ppb)	6/10/20	Ν	ND			2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Selenium (ppb)	6/10/20	Ν	ND			50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium (ppb)	6/10/20	Ν	ND			0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories

Nitrate/Nitrite Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
 Nitrate (as Nitrogen) opm)	6/10/20	Ν	ND	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
 Nitrite (as Nitrogen) opm)	6/10/20	Ν	ND	N/A	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Asbestos Contaminant

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Total Asbestos (MFL)	11/13/13	Ν	ND		7	7	Decay of asbestos cement water mains; erosion of natural deposits

Synthetic Organic Chemical (SOC) Contaminants Including Pesticides and Herbicides

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Rai	MCLG	MCL	Likely Source of Contamination
2,4-D (ppb)	10/15/20	Ν	ND		70	70	Runoff from herbicide used on row crops
2,4,5-TP (Silvex) (ppb)	10/15/20	Ν	ND		50	50	Residue of banned herbicide
Alachlor (ppb)		Ν			0	2	Runoff from herbicide used on row crops
Atrazine (ppb)	10/15/20	Ν	ND		3	3	Runoff from herbicide used on row crops
Benzo(a)pyrene (PAH) (ppt)	10/15/20	Ν	ND		0	200	Leaching from linings of water storage tanks and distribution lines
Carbofuran (ppb)	10/15/20	Ν	ND		40	40	Leaching of soil fumigant used on rice and alfalfa
Chlordane (ppb)	10/15/20	Ν	ND		0	2	Residue of banned termiticide
Dalapon (ppb)	10/15/20	Ν	ND		200	200	Runoff from herbicide used on rights of way
Di(2-ethylhexyl) adipate (ppb)	08/23/17	N	ND		400	400	Discharge from chemical factories
Di(2-ethylhexyl) phthalate (ppb)	10/15/20	Ν	ND		0	6	Discharge from rubber and chemical factories
DBCP [Dibromochloropropane] (ppt)		Ν			0	200	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Dinoseb (ppb)	10/15/20	Ν	ND		7	7	Runoff from herbicide used on soybeans and vegetables
Endrin (ppb)	10/15/20	Ν	ND		2	2	Residue of banned insecticide
EDB [Ethylene dibromide] (ppt)	10/15/20	Ν	ND		0	50	Discharge from petroleum refineries
Heptachlor (ppt)	10/15/20	Ν	ND		0	400	Residue of banned pesticide
Heptachlor epoxide (ppt)	10/15/20	Ν	ND		0	200	Breakdown of heptachlor
Hexachlorobenzene (ppb)	10/15/20	Ν	ND		0	1	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclo- pentadiene (ppb)	10/15/20	Ν	ND		50	50	Discharge from chemical factories
Lindane (ppt)		Ν			200	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor (ppb)	10/15/20	Ν	ND		40	40	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate] (ppb)	10/15/20	Ν	ND		200	200	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
PCBs [Polychlorinated biphenyls] (ppt)	10/15/20	Ν	ND		0	500	Runoff from landfills; discharge of waste chemicals

Pentachlorophenol (ppb)	10/15/20	Ν	ND	0	1	Discharge from wood preserving factories
Picloram (ppb)	10/15/20	Ν	ND	500	500	Herbicide runoff
Simazine (ppb)	10/15/20	Ν	ND	4	4	Herbicide runoff
Toxaphene (ppb)	10/15/20	Ν	ND	0	3	Runoff/leaching from insecticide used on cotton and cattle

Volatile Organic Chemical (VOC) Contaminants

Contaminant (units)	Sample Date	MCL Violati on	Your Water	Rai Low	nge High	MCLG	MCL	Likely Source of Contamination
Benzene (ppb)	6/10/20	Y/N N	ND		8	0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon tetrachloride (ppb)	6/10/20	Ν	ND			0	5	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	6/10/20	Ν	ND			100	100	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	6/10/20	Ν	ND			600	600	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	6/10/20	Ν	ND			75	75	Discharge from industrial chemical factories
1,2 – Dichloroethane (ppb)	6/10/20	Ν	ND			0	5	Discharge from industrial chemical factories
1,1 – Dichloroethylene (ppb)	6/10/20	Ν	ND			7	7	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	6/10/20	Ν	ND			70	70	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	6/10/20	Ν	ND			100	100	Discharge from industrial chemical factories
Dichloromethane (ppb)	6/10/20	Ν	ND			0	5	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane (ppb)	6/10/20	Ν	ND			0	5	Discharge from industrial chemical factories
Ethylbenzene (ppb)	6/10/20	Ν	ND			700	700	Discharge from petroleum refineries
Styrene (ppb)	6/10/20	Ν	ND			100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene (ppb)	6/10/20	Ν	ND			0	5	Discharge from factories and dry cleaners
1,2,4 –Trichlorobenzene (ppb)	6/10/20	Ν	ND			70	70	Discharge from textile-finishing factories
1,1,1 – Trichloroethane (ppb)	6/10/20	Ν	ND			200	200	Discharge from metal degreasing sites and other factories
1,1,2 –Trichloroethane (ppb)	6/10/20	Ν	ND			3	5	Discharge from industrial chemical factories
Trichloroethylene (ppb)	6/10/20	Ν	ND			0	5	Discharge from metal degreasing sites and other factories
Toluene (ppm)	6/10/20	Ν	ND			1	1	Discharge from petroleum factories
Vinyl Chloride (ppb)	6/10/20	Ν	ND			0	2	Leaching from PVC piping; discharge from plastics factories
Xylenes (Total) (ppm)	6/10/20	Ν	ND			10	10	Discharge from petroleum factories; discharge from chemical factories

Lead and Copper Contaminants

Con	taminant (units)	Sample Date	Your Water	Number of sites found above the AL	MCLG	AL	Likely Source of Contamination
Copper (p (90 th perc		9/04/20	.32	0	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits
Lead (pp (90 th perc		9/04/20	0	0	0	AL=15	Corrosion of household plumbing systems; erosion of natural deposits

Radiological Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	+Range Low High	MCLG	MCL	Likely Source of Contamination
Alpha emitters (pCi/L)	04/12/17	Ν	ND		0	15	Erosion of natural deposits
Beta/photon emitters (pCi/L)	04/12/17	Ν	ND		0	50 *	Decay of natural and man-made deposits
Combined radium (pCi/L)	04/12/17	Ν	ND		0	5	Erosion of natural deposits
Uranium (pCi/L)	04/12/17	Ν	ND		0	20.1	Erosion of natural deposits

* Note: The MCL for beta/photon emitters is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.

Total Organic Carbon (TOC)

Contaminant (units)	TT Violation Y/N	Your Water (RAA Removal Ratio)	Range Monthly Removal Ratio Low - High	MCLG	TT	Likely Source of Contamination	Compliance Method (Step 1 or ACC#)
Total Organic Carbon (removal ratio) (TOC)-TREATED	Ν	.87	0-<1.0	N/A	TT	Naturally present in the environment	Step 1

Disinfectant Residuals Summary

		Year Sampled	MRDL Violation Y/N	Your Water (highest RAA)	Range Low High	MRDLG	MRDL	Likely Source of Contamination
(Chlorine (ppm)	2020	Ν	1.44	.6-2.1	4	4.0	Water additive used to control microbes

Stage 2 Disinfection Byproduct Compliance - Based upon Running Annual Average (RAA)

Disinfection Byproduct	Year Sampled	MCL Violation Y/N	Your Water (highest LRAA)	Range Low High	MCLG	MCL	Likely Source of Contamination
TTHM (ppb)	2020	Ν	41	30-50	N/A	80	Byproduct of drinking water disinfection
HAA5 (ppb)	2020	Ν	36	21-40	N/A	60	Byproduct of drinking water disinfection

The PWS Section requires monitoring for other misc. contaminants, some for which the EPA has set national secondary drinking water standards (SMCLs) because they may cause cosmetic effects or aesthetic effects (such as taste, odor, and/or color) in drinking water. The contaminants with SMCLs normally do not have any health effects and normally do not affect the safety of your water.

Other Miscellaneous Water Characteristics Contaminants

Contaminant (units)	Sample Date	Your Water	Range Low High	SMCL
Sodium (ppm)	6/10/20	8.04	NA	N/A
Sulfate (ppm)	6/10/20	0		250 mg/L
рН	6/10/20	7.7	NA	6.5 to 8.5

Consumer Confidence Report Certification Form

Water System Name: <u>Town of North Wilkesboro</u>

Water System No.: 01 - 97- 010 Report Year: 2020 Population Served: 4245

The Community Water System (CWS) named above hereby confirms that all provisions under 40 CFR parts 141 and 142 requiring the development of, distribution of, and notification of a consumer confidence report have been executed. Further, the CWS certifies the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the primacy agency by their NC certified laboratory. In addition, if this report is being used to meet Tier 3 Public Notification requirements, as denoted by the checked box below, the CWS certifies that public notification has been provided to its consumers in accordance with the requirements of 40 CFR 141.204(d).

<u>Certified by</u> : Name: <u>Joe Patrick</u>	Title:ORC				
Signature: <u>Sherman Joe Patrick</u>	Phone #:(336)838-2371				
Delivery Achieved Date Date Report	red to State:				
The CCR includes text which provides mandated Publi	c Notice for a monitoring violation (check box, if yes)				
Check all methods used for distribution (see instructions	on back for delivery requirements and methods):				
□ Paper copy to all					
□ Notification of Availability of Paper Copy (other	than in the CCR itself)				
Notification Method	(i.e. US Mail, door hanger)				
×Notification of CCR URL URL: <u>http:</u> //	//www.north-wilkesboro.com/forms/2020_ccr.pdf				
Notification Method <u>On Bill</u>	(i.e. on bill, bill stuffer, separate mailing, email)				
Direct email delivery of CCR (attached? or					
Notification Method	(i.e. on bill, bill stuffer, separate mailing)				
□ Newspaper (attach copy) What Paper?					
Notification Method					
stuffer, door hanger	r, a postcard dedicated to the CCR, or email)				
consumers such as industry employees, apartmen methods:	quired methods) were used to reach non-bill paying t tenants, etc. Extra efforts included the following				
\Box posting the CCR on the Internet at URL:					
\Box mailing the CCR to postal patrons within	the service area				
□ advertising the availability of the CCR in news media (attach copy of announcement)					
\Box publication of the CCR in local newspape	r (attach copy)				
×posting the CCR in public places such as: (a	attach list if needed) Town Hall and Public Library				
 delivery of multiple copies to single bill are apartments, businesses, and large private enderstand 	e i				
1 1					

- □ delivery to community organizations such as: (attach list if needed)
- Note: Use of social media (e.g., Twitter or Facebook) or automated phone calls do not meet existing CCR distribution methods under the Rule.

INSTRUCTIONS

Submittal of your CCR and Certification Form to the Public Water Supply Section

Since 2013, you may submit your CCR and Certification form by one of the methods described below. Follow the directions to ensure efficient tracking and receipt of your submittal and expedited review of report data by the Public Water Supply (PWS) Section for compliance with state and federal regulations.

➢ <u>By Email</u>:

- It is imperative that you provide your Water System Name and Water System Number as shown in this example: (e.g. NC0101010 Water System Name) in the subject line of the email.
- If your CCR is displayed on a Web page, provide the direct URL for the report in the body of your email, and attach your completed Certification form to the email. (Note: Water systems <u>without</u> a web page/direct URL must attach <u>both</u> the CCR and the Certification form to the email as either a Word or PDF document.)
- Email your documents to: <u>PWSS.CCR@ncdenr.gov</u> (use 'Return Receipt Requested' to verify PWS Section's receipt.)
- By Postal Mail: Mail your CCR and Certification form to: Public Water Supply Section, 1634 Mail Service Center, Raleigh, NC 27699-1634, Attn: CCR Rule Manager. (Physical Location: Archdale Bldg. 13th floor, 512 N. Salisbury St., Raleigh, NC)
- > By FAX: FAX your CCR and Certification form to (919) 715-6637, Attn: CCR Rule Manager

CCR Customer Direct Delivery Requirements (Based on Population)

- > Systems serving 100,000 or more persons must post the CCR on a publicly-accessible Internet site using a direct URL.
- Systems serving 10,000 or more persons must distribute the CCR by mail or direct delivery.
- Systems serving less than 10,000 persons but more than 500 persons must either: (1) distribute the CCR by mail or direct delivery <u>OR</u> (2) notify their customers that the CCR is not being mailed, but it will be in what newspaper(s) and when (attach copy of notice). The complete CCR should be printed in the local newspaper, and a copy of the CCR must be made available upon request. (*The 2nd option is <u>not</u> acceptable if using the CCR for Tier 3 Public Notification!*)
- Systems serving 500 or fewer persons must either: (1) distribute the CCR by mail or direct delivery <u>OR</u> (2) notify their customers that the CCR is not being mailed, and a copy of the CCR must be made available upon request. (The 2nd option is <u>not</u> acceptable if using the CCR for Tier 3 Public Notification!)

	METHOD DESCRIPTION				
CCR DELIVERY METHOD	(Click link: EPA-CCR Rule Delivery Options Memo January 3, 2013.				
	for referenced Appendix Figures below.)				
Mail – paper copy	CWS mails a paper copy of the CCR to each bill-paying customer.				
Mail – notification that CCR is available on web site via a direct URL	CWS mails to each bill-paying customer a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed. A URL that navigates to a web page that requires a customer to search for the CCR or enter other information does not meet the "directly deliver" requirement. The mail method for the notification may be, but is not limited to, a water bill insert, statement on the water bill or community newsletter. See Figure 1 in the Appendix.				
Email – direct URL to CCR	CWS emails to each bill-paying customer a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet. A URL that navigates to a web page that requires a customer to search for the CCR or enter other information does not meet the "directly deliver" requirement. This method may only be used for customers when a CWS has a valid email address to deliver the CCR electronically. See Figure 2 in the Appendix.				
Email – CCR sent as an attachment to email	CWS emails the CCR as an electronic file email attachment [e.g., portable document format (PDF)]. This method may only be used for customers when a CWS has a valid email address to deliver the CCR electronically. See Figure 3 in the Appendix.				
Email – CCR sent as an embedded image in an email CWS emails the CCR text and tables inserted into the body of an email (not as an attachment.) This method may only be used for customers when a CWS has a valid address to deliver the CCR electronically. See Figure 4 in the Appendix.					
Additional electronic delivery that meets "otherwise directly deliver" requirement CWS delivers CCR through a method that "otherwise directly delivers" to each bill-payin methods or technologies not included above. CWSs and primacy agencies considering n methods or technologies should consult with the EPA to ensure it meets the intent of "ot directly deliver."					

CCR Direct Delivery Methods for Bill-Paying Customers

Note: Use of social media (e.g., Twitter or Facebook) or automated phone calls do not meet existing CCR distribution methods under the Rule.